
 

 

 

 

 

 

 

 

 

Staffing, Cross-training, and Scheduling with Cross-trained Workers in 

Extended-hour Service Operations.  
 

 

Version 04/25/2011 

 

 

 

 

 

 

 

Fred F. Easton   

Robert H. Brethen Operations Management Institute, 

Whitman School of Management, Syracuse University, Syracuse, NY 13244 

ffeaston@syr.edu 

 

 

 

 

 

 

 

 

 

 

 

mailto:ffeaston@syr.edu


 

Staffing, Cross-training, and Scheduling with Cross-trained Workers in 

Extended-hour Service Operations.  
 

Abstract 

 Even when cross-trained workers are somewhat less proficient than their specialized 

colleagues, chained cross-training offers numerous operational advantages for multi-product 

service businesses. In extended-hour service operations, however, those advantages are 

intermittent.  Opportunities to exploit the flexibility of cross-training depend on employee 

scheduling and provisional worker allocation decisions, which are usually made well in advance 

of the realization of demand and attendance.   

Once actual service demand and attendance are revealed, the best allocation of flexible 

capacity (and thus the number and types of service completions) becomes a deterministic 

assignment problem. However, each distinct realization of these random variables can result in a 

different allocation solution.   We propose an expected service completion metric E(Sales) that is 

based on the conditional allocation decisions for each possible system state (attendance in each 

workgroup, demand in each department) and the associated state probabilities.  The proposed 

metric links expectations of future service completions to workforce scheduling decisions, and 

eliminates the need for separate allocation variables in cross-trained employee scheduling 

models.  This results in simpler and potentially more tractable contribution-oriented staffing, 

cross-training, and workforce scheduling models for multi-product service organizations with 

perishable capacity and uncertain attendance and demand.  
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Staffing, Cross-training, and Scheduling with Cross-trained Workers in Extended-hour 

Service Operations.  

 
1. Introduction 

For service delivery systems that provide multiple services, a cross-trained workforce offers 

a number of key advantages over a system staffed by groups of specialists.  For example, cross-

training effectively pools separate demand streams (Jordan & Graves, 1995; Mandelbaum & 

Reiman, 1997), reducing the aggregate standard deviation of demand and improving service 

levels (the satisfied fraction of realized demand).  Cross-training has also been shown to mitigate 

the effects of unplanned employee absences by pooling service capacity across workgroups 

(Ebeling & Lee, 1994; Slomp & Molleman, 2002;  Bokhorst, Slomp & Molleman, 2004; Inman, 

Jordan & Blumenfeld, 2004; and Slomp & Suresh, 2005).  Noteworthy too is the ability of 

potentially less productive cross-trained employees to improve overall labor productivity 

(output/labor input) of a system, particularly when the demand streams are negatively correlated 

(Brusco, Johns & Reed, 1998; Netessine, Dobson & Shumsky, 2002).  For a more 

comprehensive list of cross-training advantages, see Hopp & Van Oyen (2004).   

For many service businesses, however – especially those that operate beyond the normal 

8-5 workday -- the benefits of cross-trained workers tend to be intermittent because their skills 

are accessible only when those workers are on duty.   Those times are largely determined by 

employee scheduling decisions, typically made 1 – 6 weeks in advance of the realization of 

demand.  Driven by demand forecasts, employee scheduling decisions are constrained by earlier 

staffing decisions that establish the overall workforce size (hereafter referred to as staffing 

decisions) and the cross-training investments that establish the skill sets for those workers.  

Collectively, these workforce management decisions determine a significant portion of 

the total labor expenses incurred by service delivery systems.  For some service businesses, the 
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overall goal of these decisions is to minimize labor expenses subject to exogenous service level 

criteria (see Taylor & Huxley, 1989; Agnihothri & Taylor, 1991; Brusco, Jacobs, Bongiorno, 

Lyons, & Tang, 1995, among others).  For service businesses where income varies with the 

number of completed transactions, however, workforce management decisions influence both 

income and expenses (Khan & Callahan, 1993; Thompson, 1995; Lam, Vandenbosch & Pearce 

1998; Easton & Goodale, 2005; Menzes, Kim & Wong, 2006; Whitt, 2006; and Bassamboo, 

Randhawa & Zeevi, 2010, among others), motivating contribution-oriented objectives.  

Workforce staffing and scheduling has been the subject of an extensive body of research 

dating from the 1950’s (for reviews, see Ernst, Jiang, Krishnamoorthy & Sier, 2004 and Alfares, 

2004).  However, scheduling cross-trained service workers usually involves both temporal and 

locational decisions.  That is, it is necessary to anticipate which demands the cross-trained 

workers will service during each planning interval (i.e., allocation decisions). To date, 

comparatively few studies address workforce scheduling with cross-trained workers. Notable 

exceptions include Warner & Prawda (1972), Warner (1976) and Loucks & Jacobs (1991), who 

investigated cost-oriented deterministic scheduling and allocation decisions for service systems 

with exogenous staff size and skill set parameters. Brusco & Johns (1998) later explored labor 

productivity improvements with cross-trained workers by modeling the staffing, cross-training, 

and allocation decisions for systems with deterministic demand streams and a single work shift. 

More recently, Campbell (2010) proposed a two-stage stochastic model for contribution-oriented 

workforce scheduling problems with cross-trained workers, where scheduling and initial 

allocation decisions are valued using a concave utility function based on the difference between 

expected demand and allocated capacity.    After demand is realized, the stochastic allocation 
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phase of the model optimizes the summed weighted quadratic shortage costs across all 

departments and time.   

Workforce scheduling articles that address attendance uncertainty are even more rare.  

Unplanned employee absences, which are common in most organizations and will likely remain 

so for the foreseeable future (CCH, 2007), complicate the relationship between scheduling 

decisions, costs, and service completions.  To illustrate, consider a multi-product service delivery 

system that employs a mix of specialized and cross-trained employees to service demand.  

Suppose that during some planning interval, some of the scheduled specialized workers in a 

particular department are absent and it becomes apparent that additional help will be needed to 

satisfy demand.  The manager of the department may seek assistance from the pool of available 

cross-trained workers capable of servicing the excess demand. Simultaneously, similar requests 

for cross-trained workers may be received from other departments.  Because the productivity of 

cross-trained workers may vary by task and the value of service completions may vary by 

department, requests for cross-trained labor are usually prioritized in some fashion to ensure that 

the available cross-trained workers are allocated to the departments where they can do the most 

good (Campbell, 2010).  The likelihood of honoring a request for cross-trained labor in a 

particular department will therefore depend on the realized attendance and the service demands 

in that department and all higher priority departments.  That is, the probability distribution for 

the mix of service completions (and thus revenue) across all departments is potentially a 

convolution of system-wide attendance and demand.   

In this study, we propose a contribution-oriented staffing, cross-training, and workforce 

scheduling model for service organizations facing demand and attendance uncertainty.  A key 

feature of this MIP model is its objective coefficients, E(Sales), which are based on optimal 
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allocations of cross-trained workers conditioned on all likely realizations of system-wide demand 

and attendance.  With optimal allocation decisions embedded in the objective coefficients, the 

need for explicit allocation decisions in workforce scheduling models is eliminated, resulting in 

simpler and potentially more tractable models.  A primary goal of this research is to assess the 

computational and economic advantages (or lack thereof) of this approach to integrated 

workforce management decisions for a cross-trained workforce.      

The remainder of this paper is organized as follows.  In section 2, we review the pertinent 

literature related to workforce management decisions (translating demand forecasts to labor 

requirements, staffing, cross-training, scheduling and allocation).  In section 3, we characterize 

cross-trained worker allocation decisions under uncertain demand and attendance, assuming 

cross-trained workers are less productive than specialists, and propose a greedy allocation 

methodology to optimize service completions.  This technique enables us to efficiently measure 

expected service completions and sales (E(Sales)) conditioned on workforce scheduling 

decisions, attendance probabilities, and joint service demand distributions.  In section 4, we 

present our model to optimize the expected total contribution over a fixed planning horizon, 

integrating expected sales with the costs of workforce staffing, cross-training, and scheduling 

decisions.  The workforce scheduling model, which lacks explicit workforce allocation variables, 

instead uses binary variables and simple multiple-choice constraints to match scheduling 

decisions with E(Sales).  In Section 5, we outline our strategies to advance this research by 

demonstrating its potential usefulness and improving its computational efficiencies.   

2.  Workforce Management Decisions 

The potential benefits of cross-training in service delivery systems – greater productivity 

and/or increased robustness in the face of demand and attendance uncertainty – are enabled 
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through a hierarchical set of inter-related decisions based on forecasts of future demand  

(Abernathy, Baloff, Hershey & Wandel, 1973).  These include staffing decisions to establish the 

size of the workforce, skill pattern and training decisions (Hopp & Van Oyen, 2004) that 

determine which employees are cross-trained and the types of tasks or skills for which they are 

trained, scheduling decisions that assign employees to specific tours (cyclic employee schedules 

that specify on-duty periods over a typical planning horizon of 1 – 6 weeks), and, for the case of 

cross-trained workers, task assignments (allocation or re-allocation decisions) for the times they 

are working (Campbell, 1999; Wright, Bretthauer & Cotê, 2006;  Thompson, 1999; and Hur, 

Mabert & Bretthauer, 2004).  All of these decisions are driven by demand forecasts and in rare 

cases, by expected absenteeism (Gans, Koole, & Mandelbaum, 2003).  However, most previous 

cross-training research related to service operations focuses on subsets of these key decisions.  

We’ll examine each of these decisions, and how they relate to one another, in the following 

subsections. 

2.1  Demand forecasts and labor requirements  

 Because both demand rates and service times tend to be uncertain, simply establishing the 

amount of service capacity needed for a particular planning interval (temporal staffing) can be a 

formidable task. To facilitate scheduling and allocation decisions, managers typically convert 

their expectations about service demand, in units characteristic of the service, to labor 

requirements.  Methodologies for translating service demand to labor requirements for front- and 

back-office operations can be found in Mabert (1979); Andrews & Parsons (1993); Thompson 

(1999); Easton & Rossin (1996); Ernst et al (2004); Green, Kolesar & Soares (2001); Whitt 

(2006), and Menezes, Kim & Huang (2006), among others.   
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Many of these methods are based on a stationary, independent, period-by-period (SIPP) 

approach (see Green, Kolesar & Soares, 2001) that divides the planning horizon into T 

consecutive time intervals, for which demand is assumed to be stationary, and applies a multi-

server queueing model to determine the number of servers needed to provide an appropriate 

service level for that period.  As noted by several researchers, SIPP has a number of important 

limitations. First, because SIPP  ignores system occupancy at the end of the preceding planning 

interval, large changes in temporal arrival rates lead to model results that significantly under- or 

over-state the labor requirements (Thompson, 1993), especially when service times are 

comparatively large or when end-of-day effects are present (Green, Kolesar & Whitt, 2007).  

Second, SIPP is often applied with marginal analysis techniques to help balance labor costs and 

opportunity costs such as waiting costs or lost revenue (Andrews & Parsons (1993); Baker 

(1976); Koelling & Bailey (1984); Li, Robinson & Mabert (1991); and Whitt (2006)).  Typically, 

the marginal labor costs reflect the average wage/employee for one interval of work.  However, 

this implies that prevailing work rules allow employee schedules with a single duty period.  

When work rules mandate shift lengths that span more than a single planning interval, the true 

marginal labor costs could range from zero to a full weeks wages (Thompson, 1995; Easton & 

Rossin, 1996). 

Finally, the presence of cross-trained workers introduces a third potential complication:  

cross-trained workers may be less efficient than their specialized counterparts. Hottenstein & 

Bowman (1998), Nembhard (2000), Hopp & Van Oyen (2004) and Eitzen & Panton (2004) 

warned of potential declines in efficiency that can occur when cross-trained workers fail to 

regularly exercise their skills.  Karupman (2006) and Yang (2007) observed quality and 

productivity losses when cross-trained workers were transferred between complex tasks, 
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concluding that the losses were due to learning-forgetting-relearning processes that occur when 

cross-trained workers change assignments. Thus, the estimated labor requirements derived from 

service demand forecasts will vary with the assumed mix of skills and the relative efficiency of 

the workers that are available to service a particular demand stream.  Since the composition of 

the workforce during any planning interval is determined by employee scheduling decisions, we 

should expect better outcomes when cross-trained scheduling decisions and estimates of labor 

requirements are combined.  

2.2 Unplanned absences 

Many labor-limited service operations must also contend with uncertain capacity.  On 

average, unplanned absences (the failure of employees to report for duty when they are 

scheduled to work) consume 2.0 - 2.3% of all scheduled work hours in the US Service sector and 

up to 5% in certain industries (U.S. Bureau of Labor Statistics, 2009a; CCH, 2007).  Some 

service managers counter capacity losses from absenteeism by “grossing up” the hourly labor 

requirements that drive employee staffing and scheduling decisions (Gans, Koole, & 

Mandelbaum, 2003).  However, recent studies (Easton & Goodale, 2005 and Easton, 2011) find 

that simply inflating labor requirements to account for expected attendance often results in 

excessive surplus capacity during many periods of the planning horizon. That is because simple 

“grossing-up” strategies overlook buffers of surplus scheduled labor naturally formed during 

many periods of the planning horizon because of work-rule constraints imposed on labor 

scheduling solutions.  While simple grossing-up strategies effectively boost service levels, they 

also increase employment levels, per capita expenses (benefits, training, etc.), and where 

employees receive sick pay benefits, wage costs. Currently, 2/3 of all full-time U.S. service 

workers receive such benefits (U.S. Bureau of Labor Statistics, 2009b).   
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Presumably, attendance decisions are made independently at the employee level.  If true, 

overall employee attendance is likely to resemble a binomial process with an exogenous, 

empirically derived rate of absenteeism (Easton, 2011; Green, Savin & Sava, 2011).  However, 

recent studies by Rauhala et al. (2007) and Green et al (2011) find intriguing evidence of a link 

between nursing workload, a consequence of earlier employee scheduling decisions, and 

employee absenteeism.   

2.3  Cross-training decisions 

Employee training decisions establish potential worker – task assignments and can be 

represented with a bipartite graph with links connecting workers to tasks (Inman, Jordan & 

Blumenfeld, 2004).  While greater connectedness implies greater flexibility and increased ability 

to accommodate demand variability (Iravani, Van Oyen & Sims, 2005), it also implies increased 

expenses for education, lost productivity while training, and higher wages after training (Ebeling 

& Lee, 1994; Inman et al, 2004; Nembhard, Nembhard & Qin, 2005).  The most cost-effective 

topologies are chained configurations or connected graphs with at least one path between any 

pair of nodes on the graph (Jordan & Graves, 1995; Brusco & Johns, 1998; Campbell, 1999; 

Felan & Fry, 2001; Graves & Tomlin, 2003; and Inman et al, 2004, among others.)  For service 

businesses that operate beyond the normal 8-5 workday (hospitals, call centers, hospitality 

businesses, etc.), however, the ability of cross-trained workers to improve productivity and 

robustness is depends on workforce scheduling decisions.  That is, the structure of the worker – 

task graph is usually quite dynamic.   

2.4  Cross-trained workforce allocation decisions 

The subject of allocating cross-trained workers over time has interested and challenged 

researchers for a number of years.  Trivedi & Warner (1976) modeled the allocation of float or 
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pool nurses to cover imminent nursing shortages during a single shift, given exogenous staffing, 

scheduling and cross-training decisions.  Loucks and Jacobs (1991) focused on the deterministic 

problem of assigning workers to tasks to order to minimize overstaffing.   Nembhard (2001) 

proposed a greedy heuristic to improve productivity by assigning workers to tasks based on 

individual learning rates.  Examining understaffed systems, Campbell (1999) and Campbell & 

Diaby (2002) modeled optimal allocation decisions for cross-trained workers under an objective 

function concave in the amount of allocated capacity.   They utilized their models to explore the 

relative performance of alternative cross-training policies.  Brusco (2008) proposed an efficient 

exact allocation procedure for a similar quadratic objective function.  Easton (2011) suggested a 

simpler linear objective, and explored the interaction of cross-training with scheduling flexibility 

on overall performance.   

2.5   Integrated employee scheduling decisions for cross-trained service workers 

Employee scheduling (or timetabling) and allocation decisions are typically made 1 – 6 

weeks in advance, long before the realization of actual demand, and are constrained by prior 

staffing and cross-training decisions.  They also must adhere to the work rules that govern the 

characteristics of acceptable employee schedules such as the number of work days and days off, 

allowable shift lengths, shift starting times, meal and rest breaks, and the like.  Because service 

capacity tends to be highly perishable and labor-limited, an important managerial challenge is to 

schedule and allocate enough capacity for each planning interval to satisfy an appropriate 

fraction of service demand.  Depending on the nature of the service, the planning intervals for 

scheduling and allocation decisions typically range from 15 minutes to eight or more hours in 

length.   
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Comparatively few workforce scheduling models have been proposed for cross-trained 

employees.  While Warner & Prawda (1972) modeled short-term (3 day) scheduling of float 

nurses, a survey by Burke, De Causmaecker, Vanden Berghe, & Van Landeghem (2004) 

concluded that, at the time of their study, few if any existing rostering (workforce scheduling) 

methodologies dealt effectively with float staff.  Brusco & Johns (1998) addressed staffing and 

cross-training decisions in their allocation and break-scheduling model for maintenance services.  

Assuming multiple demand streams, they sought the ideal number of cross-trained employees to 

support a given cross-training policy for a single shift, as well as the meal break times for each 

worker, to satisfy time-varying demands for each skill.  However, they assumed all workers 

started and ended work at the same time, and other than break placement, did not broadly address 

scheduling issues. 

Billionnet (1999) examined a deterministic operational environment with downgrading, 

where higher-skilled, higher paid workers can perform tasks ordinarily assigned to low-skilled 

workers but not vice-versa.  Downgrading implies limited cross-training flexibility but precludes 

chaining at the highest skill levels. Billionet (1999) modeled days-off staffing, scheduling, and 

allocation decisions, assuming all workers begin and end their shifts at the same time, to 

determine the optimal number of workers in each skill class and their allocation to high- and 

low-skill tasks each day.  Later, Bard (2004) incorporated downgrading flexibility in his staffing 

and scheduling model for US Postal Service machine operators, determining the ideal number of 

full-time and part-time workers with high- and low-skill levels, as well as their daily schedules 

for a one-week period.  Unlike Billionnet (1999), Bard’s (2004) model allowed overlapping 

shifts. 
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Recently Campbell (2010) and Easton (2011) described stochastic scheduling and allocation 

models for cross-trained workers. Campbell (2010) devised a two stage stochastic program 

where the initial deterministic stages assigns workers to schedules to maximize expected utility 

less labor costs, where expected utility increases inversely with expected labor shortages.  In the 

second phase, cross-trained workers are (re)allocated in response to realizations of demand.  

Easton (2011) also proposed a two-stage stochastic covering-type workforce scheduling model to 

explore the relationship between scheduling flexibility and cross-training, including absenteeism 

as a second source of uncertainty. In the first phase, the initial staffing, training, scheduling, and 

allocation decisions were required to cover expected demand given expected attendance.  Similar 

to Campbell (2010), the second (stochastic) stage reallocated available cross-trained workers to 

minimize capacity shortages.  

As this brief review of the relevant literature suggests, the introduction of cross-trained 

workers increases flexibility but also increases the complexity of workforce staffing and 

scheduling decisions.  We conclude this section by summarizing three key points.  First, the 

presence of cross-trained service workers provides even greater motivation to integrate processes 

that determine capacity requirements and workforce scheduling decisions.  Second, virtually all 

existing workforce scheduling models for cross-trained workers utilize explicit allocation 

variables, constrained by workforce scheduling decisions, to indicate how the cross-trained 

workers will likely be deployed through time. These variables, which increase the complexity of 

workforce scheduling models, usually have objective coefficients that serve as proxies for their 

expected benefits or costs once actual demand is realized.  Finally, it is usually impossible to 

know with any certainty how flexible resources will actually be deployed until long after the 

scheduling decisions have been finalized.  Actual allocation decisions for cross-trained workers 
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depend on complex interactions between realized employee attendance and realized demand 

across for the entire service delivery system. Thus performance estimates based on simple 

expectations of demand and attendance are likely to be inaccurate.   

3. Service worker staffing, cross-training, scheduling & allocation under uncertainty 

 As suggested in the introductory section of this paper, the financial benefits achieved 

with cross-training investments depend on the effectiveness of workforce allocation decisions in 

response to variable demand and attendance across the organization.  In this section, we first 

introduce a metric for expected sales to help guide those decisions, then incorporate that metric 

into our workforce planning model.  Although additional notation will be developed for specific 

subsections, we use the following notation to represent common model parameters and decisions. 

Parameter Definitions: 

 

A  average absence rate (hours lost to unplanned absences/number of scheduled hours) 

 

Cd unit revenue/completed service in department d. 

 

D  number of departments with unique skill requirements, indexed d=1,…, D 

 

G  number of workgroups, defined in terms of worker skills, indexed g=1,…,G 

 

Pgd  relative productivity of workgroup g in department d, where 0 < Pgd < 1, defined for all 

g, d pairs. 

 

atj   1 if period t is a duty period for schedule j, 0 otherwise; defined for intervals t = 1,… T 

and feasible schedules indexed j = 1,…, N (the number of feasible schedules under 

prevailing work rules governing employee schedules. 

rdt realized service demand in department d, period t, with density fd( rdt ),  and CDF 

Fd(rdt), and expectation   dt. 

 

Decision variables 

 

Xgj  number of employees in workgroup g assigned to schedule pattern j 

 

Ygdt  number of employees from workgroup g allocated to demand stream d during period t, 

conditioned on realized demand and attendance. 
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ti   1 if the current solution matches scheduled labor pattern i for period t, 0 otherwise, for t 

= 1.,,,T and I = 1,…,M   

 

Intermediate/consequence variables 

 

Wgt   jXgjatj, the number of employees from workgroup g scheduled for duty during period t. 

 

wtg   a specific realization of workgroup attendance during period t, where wgt  

 is discrete-valued and 0 < wgt < Wgt.   

 

h(wt,Wt,A) probability of realizing attendance wt given scheduled labor Wt and average absence 

rate A, assumed to be independent of demand.   

 

 With a cross-trained workforce, each realization of attendance and service demand is 

likely to result in a unique allocation decision.  To illustrate, suppose that for a particular period t 

(which could range from 15 minutes to 8 hours or more), the realized attendance across all 

workgroups is wt and the realized demands (in units of standard labor) across all departments is 

rt.  A hypothetical example is shown in Figure 1, with two specialized and one cross-trained 

workgroup serving two different departments.  At the time the allocation decisions Ygdt are 

made, the scheduled labor costs for period t are essentially sunk.  Thus for a contribution-

oriented objective, the goal of the allocation decisions for period t is maximize total revenue 

from the available resources, or a generalized transportation problem. 

(Please Insert Figure 1 about here) 

3.1  Expected Sales 

 This study assumes revenue is determined by service completions, which can be 

estimated in several different ways.  For example, in queueing systems with impatient customers, 

the number of service completions can be measured by subtracting the number that abandon 

from the number of arrivals during each period.  Multi-server queueing models with 

abandonment (e.g., M/M/s +M) can predict the number of abandonments and thus the expected 
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number of service completions (see Koole & Mandelbaum, 2000; Easton & Goodale, 2005), 

given an assumed probability distribution for customer patience.  Although such models are 

useful for revenue estimates, they are usually predicated on identical servers (Whitt, 2006) and 

thus may not be applicable for systems staffed by a mix of dedicated and potentially less 

productive cross-trained workers.  In addition, many service delivery systems utilize skill-based 

routing systems to direct arriving customers to available servers.  Pinker & Shumsky (2000) note 

that with such systems, the arrival process for less-productive cross-trained servers tends to be 

more “bursty” than a simple Poisson process, further complicating the derivation of closed form 

abandonment models.   

 Although work with heterogeneous, multi-server queues with abandonment is ongoing 

(see Mandelbaum & Stolyar, 2004), for this research we adopt a simpler estimator for service 

completions:  the smaller of realized demand or the capacity that is allocated to serve realized 

demand (e.g., min{rdt, g YgdtPgd}).  This assumption implies that allocated capacity in excess of 

demand is wasted, that realized demand exceeding total allocated capacity results in lost sales, 

and that fractional service completions are possible when gYgdt Pgd in not integer valued.  Using 

this measure, the employee allocation decisions (Ygdt) that maximize revenue Z(wt,rt) when wt 

employees are present and realized demand is rt (see Figure 1) assume the form of a 

deterministic generalized transportation problem, where: 

Z*(wt,rt) = Maximize               
 
   

 
    (1) 

Subject to:  

Allocate no more than the available staff in workgroup g during period t, or 

d Ygdt < wgt, for g = 1,…,G. (2) 

Allocate up to rdt units of capacity to department d, or 
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g Ygdt * Pgd < rdt, for d = 1,…,D. (3) 

Of course, Figure 1 presents just one of the many possible realizations of attendance and 

demand.  For example, suppose that for each workgroup g, there are Wgt = atjXgj employees 

have been scheduled for duty during period t, with Wt = [W1t, W2t, …, WGt].  However, on 

average only (1-A) scheduled employees actual report for duty.  If the decision to report for work 

is random and made independently by each employee, realized attendance for each workgroup 

may be characterized as a binomial process where the expected attendance for each workgroup is 

  gt = (1-A)Wgt and the probability of wgt employees reporting for duty is ~ B(wgt,Wgt,1-A).  

Considering all G workgroups, there could be as many as g(Wgt +1) different realizations of 

system-wide attendance (e.g., wt = [w1t, w2t, …, wGt]), where the probability of a particular 

attendance realization wt is H(wt,Wt,A) = g(wgt,Wgt,1-A).  Let each distinct realization of 

system-wide attendance wt be an element of set U(Wt).    

 Similarly, realized service demand rdt for department d during period t (expressed in 

standard labor units) tends to be random and non-stationary over the planning horizon for most 

service businesses.  Unlike attendance, which is bounded above by the number of employees 

scheduled for duty, service demand in any one period can be significantly larger or smaller than 

expected.  However, ignoring improbable extremes (for example, where Fd(rdt) or 1-Fd(rdt) < ), 

the number of different realizations of discrete-valued demand across all departments (rt) are at 

least finite.  Let rdt_L and rdt_u be the smallest and largest likely demand realizations (ie, rdt_L = 

min{ rdt |Fd(rdt)} >  and rdt_u = max{ rdt|1-Fd(rdt) < }).  Finally, let V(rt) be the set of realized 

demand vectors rt = [r1t, r2t, … , rDt] for departments d = 1,…, D, given demand expectations [  1t, 

  2t, … ,    Dt].  The cardinality of V(rt), which depends on the assumed range for each demand 
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stream, is d(rdt_u – rdt_L + 1) and, where service demand streams are independent, the probability 

of realizing a specific demand vector rt = [r1t, r2t, … , rDt] is dfd(rdt).  

 We can now evaluate the total expected revenue during period t when the expected 

demand vector is Rt and Wt workers have been scheduled for duty across the system.  Let 

E(Sales|Wt,Rt) be the total expected revenue achieved when Wt = (W1t, W2t, …, WGt) employees 

are scheduled for duty across all workgroups and expected service demand across all 

departments is Rt = [  1t,   2t, … ,    Dt].  Essentially, this is a convolution of the joint attendance-

demand distributions, assumed to be independent, and Z*(wt,rt), or 

                                                      dfd(rdt). (4) 

 The cardinality of sets U and V are potentially quite large, and each combination requires 

the solution of an optimal allocation problem.  However, the computational burden necessary to 

evaluate (4) may not be that onerous for two reasons.  First, although the optimal allocation 

problem to determine Z*(wt,rt) in equations (1) – (3) is modeled as a generalized network, a 

solution can be obtained with a simple revenue-maximizing greedy strategy that prioritizes 

allocation decisions in descending order of Cd*Pgd.   Table 1 illustrates these priorities for a 

simple chained system with two demand streams (A and B), each served by a specialized 

workgroup (a or b), plus a third workgroup (ab) that can perform either task.   For simplicity, we 

have assumed the marginal revenue for each service completion Cd  is 1.0, so we can restrict our 

attention to service completions rather than revenue.   

According to the priorities in Table 1, we first allocate the staff from workgroup a to 

service demand in department A, then allocate workgroup b staff to service department B 

demand.  The third priority is to allocate cross-trained staff from workgroup ab to service any 

overflow demand rA that exceeds group A’s realized capacity, and finally allocate any 
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Table 1:  Greedy priorities for allocation decisions 

  Productivity Pgd  

 Dept d = A B  

 a 1.00 0.00  

Workgroup g = b 0.00 1.00  

 ab 0.80 0.75  

     
Allocation Priority Group g Dept d CdPgd E(Salesd|Wt,rdt) for dept by group 

1 a A 1 E(SalesA|Wat,   At) 
2 b B 1 E(SalesB | Wbt,   Bt) 
3 ab A 0.8 E(SalesA| Wabt, aAt,   At) 
4 ab B 0.75 E(SalesB | Wabt,Wat,Wbt,   At,   Bt) 
-- a B 0 NA 

-- b A 0 NA 

 

 

remaining group ab labor to service overflow demand in department B.  The priorities allow us to 

hierarchically compute E(Salesd) for each department that are completed by each workgroup.   

Second, because labor allocation decisions Ygdt and service completions are conditioned on 

two independent random variables, the evaluation of (4) may be further simplified.  Figure 2 

illustrates a plot of service completions in departments A, with demand distributed fA(rA) using 

capacity allocated from workgroups a and ab according to allocation priorities shown in Table 1.  

E(SalesA) can be determined by integrating the two triangular and two rectangular regions of the 

graph in Figure 2.  Further, the distribution of unallocated labor for workgroup ab, and thus 

available for servicing overflow demand rB, is related to the distribution for service demand A.  

Continuing our example, we apply the priorities in Table 1 and compute: 

1)   The expected number of Department A services completed by workgroup a, or:  

E(SalesA|    ,   At) =            
         

     
                           (6) 

Where the expected attendance for group a workers             .  Here we truncate 

the fractional component of     PaA because realized demand rA is assumed to be discrete. 
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2)  The second priority (actually a tie for first) is to allocate staff from workgroup b to service 

demand stream B, where the expected number of service completions by this workgroup is:   

E(SalesB|    ,   Bt) =           
         

     
                          (7) 

3) The third priority is to allocate labor from workgroup ab to department A in order to cover 

any demand that exceeds expected group a capacity E(Wa)*PaA. The expected number of 

completions in department A by workgroup ab is thus: 

E(SalesA|             ) = 

                      

                     

              

 

                                                          (8) 

4) The remaining cross-trained labor from workgroup ab can be allocated to service overflow 

demand in department B.  However, Yab,B is constrained by the expected quantity of group ab 

workers in attendance and Yab,A, a random variable representing the quantity of ab labor 

previously allocated to department A. As shown in Table 2 below, the probability of 

allocating Yab,A,t |(rAt,Wat, Wab,t), or g(Yab,A,t|rAt,Wat,Wab,t), is related to the expected 

attendance for workgroups a and ab, as well as the distribution fA(rAt).  Note that since rAt is 

assumed discrete, Yab,A,t|rAT,Wat,Wab,t can assume only                     

           distinct values from 0 to E(Wab,t). Previous allocation decisions Yab,A,t impose 

stochastic upper bounds on the quantity of workgroup ab labor that can be allocated to 

department B.  For example, upper bound Yab,B,t <       – Yab,A,t|rAt,Wat,Wab,t occurs with 

probability g(Yab,A,t).  Thus, the amount of cross-trained ab labor allocated to department B, 
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or Yab,B,t, depends on the unmet demand in that department and any previous allocations of 

group ab labor, or: 

Yab,B,t | Yab,A,t, rBt,Wabt, Wbt, =                      
                            

     
  .  (9) 

Since the exact allocation of cross-trained ab labor to department B depends on attendance 

and the joint distribution of demand in departments A and B, the expected service 

completions in department B by cross-trained workers from group ab are: 

Table 2:  Allocation of group ab labor to department A, conditioned on rA, Wa, and Wab. 

For rAt on the interval  Yab,A,t |(rAt,Wa,t, Wab,t)  g(Yab,A,t|rAt,Wat,Wab,t) 

               0              

                                                    fA(rAt) 

                    <  rAt < ∞       1-                        

 

E(SalesB|Wab,t,Wat,Wbt,   At,   Bt) = 

                 
             

     
 

     

               

                   

            

                   

                              
             

     
 

     

         
            (10) 

Finally, while not applicable to this example, the remaining quantity of workgroup ab labor 

still available for other assignments is a random variable conditioned on Yab,A and Yab,B, where 

the available group ab labor is E(Wab) – Yab,A|rAt,Wabt,WAt – Yab,B,t|Yab,B,t, rBt,Wabt,WBt with 

probability g(Yab,A| rA,WA,Wab) x g (Yab,B,t|Yab,A,t,Wabt,WBt,rBt).  In this fashion, the allocation 

logic and expected completions in this example can be systematically extended to more complex 
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systems than that illustrated in Figure 1, by successively determining the distributions of 

allocations of cross-trained labor for each priority level.   

3.2  A Numerical Example 

We conclude this section by applying the allocation priorities for the three workgroups and 

two departments shown in Table 1 to compute expected service completions and sales for a 

simple example.  For this example, we assume that for both departments A and B, the expected 

demand for some period t is 3 units, distributed Poisson.  We also assume that 3 workers from 

group A, 2 workers from group B, and 2 workers from group ab have been scheduled to work 

during that period, and that the average absenteeism rate A is 0.10 per hour of scheduled labor.  

Applying the E(Sales) models in priority order, the expected service completions for the assumed 

conditions are shown in Table 3 below. 

Although tedious, the computation of E(Sales) does produce an accurate estimate of expected 

service completions or sales.  A simpler alternative is to allocate capacity using the same priority 

schemes, but restrict our evaluation to simple expectations for attendance and demand.  

Essentially, this is the strategy embodied in the stage 1 procedures suggested by Campbell 

(2010) and Easton (2011).  In effect, this approach “squares off” the diagonals in Figure 2 and  

thus tends to overstate service completions.  To illustrate, we can apply the same allocation 

priorities from the previous example using expectations of attendance and demand.   

Table 3:  Expected service completions by department and workgroup 

     E(Service Completions) 

Priority Group Department Model Dept A Dept B 

1 a A E(SalesA|Wa,RA) = 2.038597  
1 b B E(SalesB|Wb,RB) =  1.590894 

2 ab A E(SalesA|Wab,Wa,RA) = 0.551674  
3 ab B E(SalesB|Wab,Wa,Wb,RA,RB) =    0.500091 

     Total Expected 

Completions 
2.590271 2.090985 
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In step 1, YaAPaA = 2.7 units of the expected capacity for workgroup a is allocated to 

department A, leaving an expected shortage of 0.3 units of demand.  In step 2, all YbBPbB = 1.8 

units of the available capacity from workgroup b are allocated to department B, leaving the 

expectation of 1.2 units of unmet department B demand.  In step 3, Yab,A = 0.375 units of group 

ab labor are allocated to department A to service the remaining 0.3 units of demand (since Pab,A = 

0.8).  The remaining group ab labor (E(Wab) – Yab,A = 1.425 units) is equivalent to 1.06875 units 

of capacity for department B demand and should be allocated to the overflow demand in 

department B.  In total, this approach suggests 2.7 + 0.3 = 3.0 service completions in department 

A and 1.8 + 1.06875 = 2.8675 completions in department B, overstating expected completions in 

departments A and B by 15.8 and 37.2 percent, respectively.  However, we expect that the 

magnitude of the error will tend to decrease as scheduled service levels increase.   

4. Contribution-oriented Staffing and Scheduling for Cross-trained Service Workers 

 Although service managers can respond to capacity shortages by calling in off-duty 

workers (often at overtime wages), a less disruptive strategy is to anticipate the variability of 

attendance and demand and devise regular schedules that maximize the expected contribution to 

profit.  In this section we propose a contribution-oriented model that, unlike existing models for 

cross-trained workforce scheduling decisions, does not require explicit allocation variables.    

Our modeling strategy is based on the enumeration of the members of set Q, the possible 

combinations of scheduled labor quantities Qi = [q1i, q2i, …, qGi] that an optimal solution might 

recommend for any interval t = 1,…,T in the planning horizon.  To make this rather brute-force 

strategy somewhat more practical, we establish finite bounds, say   
    and   

   , representing 

the minimum and maximum number of workers from each workgroup g that might be scheduled 

for duty during any one time during the planning horizon.  Together, these bounds determine M, 
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the number of unique combinations of scheduled labor for each of the G workgroups that could 

arise at any one time during the planning horizon, where M = g(  
       

    + 1).   

For each such vector, we compute E(Sales|Qi,Rt) for each period t.  Adapting a strategy 

suggested by Thompson (1995) for contribution-oriented objectives, we utilize binary variables 

and multiple choice constraints to match the vector scheduled labor for period t, or Wt = atjX1j, 

atjX2j,…, atjXGj, to the appropriate vector Qi and the associated objective coefficient 

E(Sales|Qi,Rt).  Because optimal allocation decisions are implicit in the objective coefficients 

E(Sales), we can exclude them from our workforce scheduling model, which has the form: 

 Maximize t i E(Sales|Qi,Rt)*ti – gj CgjXgj (11) 

 ST 

 Establish the number of workers in each workgroup scheduled for duty during period t: 

  

  Wgt - atjXgj = 0 for g = 1,…, G and t = 1,… T (12) 

 

 Match the vector of scheduled labor to one of the M possible solutions for period t: 

  

  Wgt - ti qgi > 0 for g=1,…,G and t = 1, . . . , t (13) 

 

  i=1,M ti = 1, for t = 1,…,T (14) 

 

The decision variables Xgj determine the number and types of workers scheduled for duty 

during each period, while their sum establishes the ideal workforce size and the size of each 

predefined workgroup. In this sense, the model can be considered an integrated system for 

staffing, cross-training, and labor scheduling.  However, by establishing bounds for total staff 

size and/or total workgroup size, it can be used to investigate the sensitivity of total contribution 

to small changes in these values.  Allocation decisions are embedded in the objective coefficients 

E(Sales|Qi,Rt), but can easily be reconstructed for a given realization of demand and attendance, 

along with the associated probability distribution for sales.   
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The binary variables ti are arranged in T sets of multiple-choice constraints.  Most current 

MIP solvers have specialized algorithms for evaluating special ordered sets of this type.  

However, the proposed model remains a mixed integer program with a potentially large number 

of both general and binary integers, so exact solutions may be elusive for problem instances of 

realistic dimensions.   

In Figure 3, we illustrate a “days-off” spreadsheet version of the proposed model.  Intended 

as a proof of concept, we applied (11) – (14) to a hypothetical system with two departments, each 

with a dedicated workgroup, and one cross-trained workgroup that can serve in either 

department.  This particular instance assumes set U contains M = 4,096 different schedule 

patterns that could be realized over the course of a week, so the model has 7 x 4,096 binary 

variables and 21 general integers.  Using CPlex 12.2, cold-start solutions for this and several 

similar examples were achieved in an average of 04:31 minutes.   

(please insert Figure 3 about here) 

5.   Further research 

Although few contribution-oriented staffing and scheduling methodologies have been 

proposed for cross-trained service workers, reliable or otherwise, practitioners clearly address 

this issue in some fashion every time they develop schedules for their employees.  We suspect 

that many service managers base their schedules on simpler approximations for E(Sales), which, 

as our simple example in section 3.3 indicates, may significantly overstate expected completions.    

As this research progresses, our immediate goals are to further refine the model by 

investigating alternate measures of service completions (including heterogeneous server models 

with abandonment), reducing the number of required schedule alternatives (M) that must be 

evaluated by the model, and further exploiting model structure to improve the computational 
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efficiency of the solution methodology.  For the final stages of this research, we intend to 

undertake a simulation study based on optimal staffing and scheduling decisions driven by both 

the E(Sales) metric and the simpler expectation approach described in section 3.3. Our objective 

is to identify environmental conditions that tend to favor the proposed approach. We hope to 

show that our proposed methodology is well worth the extra effort it entails to assess the system-

wide pooling effects of flexible but unreliable cross-trained employees in service delivery 

systems.  
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Figure 1:  Allocation decisions Ygdt given realized attendance wgt and realized demand rdt 
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Figure 2:  Expected service completions for service demand distributed f(rA), given expected primary capacity E(Wa,t)Pa,A and 

secondary cross-trained capacity E(Wab,t)Pab,A 
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Figure 3:  Block structure, days-off scheduling model for 3 workgroups & 2 departments 

 

 

 
 


