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Purpose: 

The purpose of this paper is the derivation of design principles for smart Service Support 

Systems (SSS).  An SSS is a personalized, intelligent decision support system for navigating a service 

journey (Badinelli 2021). The development of smart SSS’s is a natural next step in the quest for more 

efficient and effective service systems (Barile & Polese 2010). The soon-to-be ubiquitous applications of 

artificial intelligence (AI) and big data analytics (BDA) in resource-aggregating service systems motivates 

an investigation into the benefits and limitations of these systems (Langley et al 2020).  

The paper extends the author’s previous research in the role of actor engagement decisions as 

the mechanism for determining the trajectory of an actor’s service journey (Badinelli et al 2019).  We 

model each engagement as an ecostructuring decision followed by a commitment decision.  The focus of 

this paper is the joint support of the ecostructuring decision by the individual actor and the intelligent 

SSS. 

 

Methodology: 

The principal methodology of this research is decision analytics.  Specifically, we begin with a 

model of an actor’s service journey as a sequential decision process (SDP).  This process incorporates the 

actor’s opportunities to explore service ecostructures for their service potential and opportunities to 

exploit service ecostructures for value cocreation (Badinelli et al 2012).  At each juncture of the SDP, the 

actor and the SSS agent must learn from previous engagements and adapt the ecostructure to the 

evolving value structure and knowledge base of the actor.  

We examine the salient methodologies for decision support in SSS’s to date.  The multi-armed 

bandit (MAB) decision model has become a favorite of online service systems that present an actor with 

an assortment of options for the service ecostructure based on a probabilistic assessment of the actor’s 

preferences. Similarly, Bayesian decision models are often used to describe rational sequential decision 

processes.  We also consider heuristic decision rules as options for the actor.  Computer simulation is a 

methodology that allows experimental testing of our theoretical results and conjectures. 

 

Results: 

We identify a potential learning gap between an actor and an SSS with the following 

implications. 



 
 

• Synchronizing an actor’s SDP and that of a smart SSS can be impossible in many cases.  

• The actor’s actions that are independent of the SSS make the actor’s journey only partially 

observable to the SSS. 

• The limitations of an SSS call into question the viability of micro services, aggregation services, 

intelligent service support systems (Barile & Polese 2010, Golinelli 2010).   

• Overcoming the limitations of an SSS through more sophisticated analytics could introduce 

coupling across the stages of a service journey which could threaten the scalability, evolvability 

and observability of the SSS (DeBruyn 2014, Mannaert, H. and Verelst, J. 2009).   

 

Research Limitations: 

The research is theoretical and would benefit from empirical support. 

 

Practical Implications: 

This research provides recommendations for the future development and deployment of 

intelligent agents in smart service systems. 

 

Originality/Value: 

This paper presents an evaluation of smart service systems at an operational level. Benefits and 

limitations of intelligent agents in service support systems are revealed.  Results are supported by 

analytical models of ecostructure decisions. 
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1 Introduction 
This paper defines the concept of a service ecostructure as a precondition for the manifestation 

of the dynamics of a service ecosystem (Vargo and Lusch, 2016) and derives key features of 

ecostructures that engender viability of ecosystems (Wieland et al., 2012).  To this extent, we build on a 

model of a service journey as a sequence of engagements (Badinelli 2015 ) integrating components of a 

service ecostructure. From this model, principles of subjective logic (Josang 2016) and the 

implementation of intelligent agents are introduced to the ecostructure model.  A fundamental aspect 

of the research is the exposition of the effects of actor decision making on the service potential of an 

ecostructure. Badinelli (2015) establishes the role of actors’ decision modeling as the subjective 

determinant of service trajectories through the ecostructure and the emergence of the ecosystem.  See 

Figure 1.  The  viability of a service ecosystem (Golinelli, 2010; Barile and Polese, 2010) depends on the 

successful execution of decisions that engage actors in the structural elements of the system (Badinelli, 

2015) .  The paper introduces subjective logic as a robust tool for modeling engagement decisions that 

require abductive reasoning with the assistance of expert opinions that could be provided by an 

intelligent agent (IA). 

Figure 1: A service journey via engagement decisions 
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This paper makes three contributions: 

(i) We identify the ecostructure decision as a necessary action by each actor at each stage of the service 

journey. 

 (ii) We model the ecostructure decision using the theoretical construct of the multi-armed bandit 

problem (MAB) for exploration and exploitation. 

(iii) We recognize the ecostructure decision as an application of abductive reasoning and we introduce 

subjective logic as a modeling tool that is uniquely applicable to the ecostructure decision.   

 
We define ecostructure by examining the structure-system paradigm (Barile and Saviano, 2011) 

based on systems theories.  The ecostructure of a service ecosystem is a network of elements  that 

include: 

• resources 

• actors 

• agents 

Each element possesses properties relevant to an actor that are defined information variety 

(Golinelli, 2010). The information variety of each actor/agent consists of : 

• categorical values (strong beliefs)  

• interpretive schemes (specific of certain disciplines or more general)  

• information units 

These elements of information provide the actor with knowledge and perspective that assist in 

making engagement decisions.  These elements derive from the experience and knowledge of the actor, 

which is modified by experience with the service journey.  The scope of the actor’s education, 

experience, participation in institutional arrangements (Scott, 2017, Vargo and Lusch, 2016, Siltaloppi et 

al., 2016) all contribute to and constrain the actor’s information variety. 

The word “system” is applied in a confusing way in the theory of systems.  Every system consists 

of two aspects: the structure of the system and the transitions that move the system from one state to 

another.  This dichotomy is referred to as the structure-system paradigm.  In the literature, the word 

“system” is applied to both the system and the transition component of the system.  To avoid this 

confusion, we adopt the use of the word “dynamics” to represent the transition aspect of the system.   

The dynamics, applied to an ecostructure completes the ecosystem. Hence, the service ecostructure is a 

precondition for the evolution of an ecosystem (Badinelli, Polese, Sarno 2019).   
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The foundation of this research can be summarized through the following arguments (Badinelli 

2015):  

• Service dynamics emerge from a service ecostructure through service-journey trajectories. 

• Service trajectories consist of a sequence of service activities. 

• Service activities are instigated by engagement decisions of actors and agents. 

• All value co-creation is generated by service activities. 

• Engagement decisions are based on the actor’s a priori subjective assessment of the value that can 

be co-created . 

• Therefore, the performance of a service in value co-creation is the outcome of engagement 

decisions made in the context of an ecostructure. 

The methodology of this research integrates several theories and modeling perspectives: service 

science, Service Dominant Logic (SDL), Viable Systems Approach (VSA), decision modeling and subjective 

logic.  The rest of the paper is organized as follows.  In Section 2, features of ecostructure that frame the 

engagement decision. We probe the engagement decisions further and identify these decisions as two 

types: ecostructure decisions for exploration of the service landscape and activity engagement decisions 

for exploitation of value co-creating processes.  Section 3 provides an overview of the applicability of a 

theoretical, decision-modeling framework  known as the multi-armed bandit problem (MAB) for the 

engagement decisions. In Section 4, the basic principles of subjective logic in decision making are 

introduced in the context of ecostructure decisions supported by an intelligent agent.  In Section 5, we 

apply the subjective logic to examples of ecostructure decisions to demonstrate the performance of an 

IA-supported decision support system. 

2 Service Systems and Ecostructure Decisions 
• We begin with some essential definitions. The ecostructure of a service journey is unique to each 

actor.  For each actor we define different types of ecostructures, based on the relevance and 

accessibility of the ecostructure to the service that the Actor/Agent pursues.  Associated with each 

ecostructure is its corresponding dynamics, these components together forming an ecosystem. 

• The Extended Ecostructure (first instantiation DeBruyn 2014) is the general set of resources, actors, 

agents, platforms and information of all types that exist and are known to the Actor/Agent. 

• The Accessible Ecostructure is the portion of the Extended Ecostructure that is accessible to a 

particular actor under the institutional and physical constraints that apply to the actor. 

• The Relevant Ecostructure is the portion of the Accessible Ecostructure that is within the conscious 

environment of the actor that is judged to be relevant to the service journey of the actor. 
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• The Engaged Ecostructure is the portion of the Relevant Ecostructure that the actor engages for a 

particular service activity (second instantiation DeBruyn 2014). 

These definitions of ecostructure point out an important aspect of service systems. The 

Accessible Ecostructure is part of the Extended Ecosystem and the lower levels of ecostructures are 

parts of subsystems of the Extended Ecosystem. Hence, the Extended Ecosystem represents a system of 

systems. At  each stage of an individual actor’s service journey a subsystem of a larger system is 

engaged. The relevant ecostructure can change at each stage as the requirements of each stage are 

unique. Furthermore, the fact that the actor in a service ecosystem is intelligent and have the potential 

to learn, adapt and decide to engage a different ecostructure at each juncture of the service journey. 

The service journey for any actor is a sequence of resource-integrating co-creative activities 

(Badinelli 2015).  Each of these activities is initiated by a joint decision of the participating actor/agents 

to engage in the activity. This engagement can occur only if the Relevant Ecostructures of the 

participating Actor/Agents intersect as illustrated by Figure 2. For example, 

• A student’s relevant ecostructure for a given module of a course can consist of a textbook chapter, 

instructor meetings, YouTube videos, fellow students and web sites. 

• A patient’s relevant ecostructure for the stage of seeking a diagnosis can consist of several medical 

web sites, a visit to a physician, advice from friends and family and self-help books. 

• A tourist’s relevant ecostructure for the stage of planning an itinerary can consist of travel agent 

consultation, tour-guide publications, airline and hotel web sites, travel reservation web sites and 

advice from family and friends. 

Upon completion of a service activity, each actor receives output resources from which value is 

extracted.  Before the next stage of the journey is engaged, each Actor/Agent has the opportunity to 

evaluate the activity just completed and learn from it.  Actor, possessed of intelligence and value 

categories, have the opportunity to evaluate the outcomes of each activity in terms of their individual 

motives, interpretive schema and values.  Furthermore, the information units of each actor are 

expanded with each activity.  Hence, the actor can possess new data, information and knowledge with 

which to continue the service journey.  This learning opportunity informs the subsequent engagement 

decision.  In effect, the actor’s Relevant and Accessible ecostructures can be modified by the experience 

of the activity just completed.  Accordingly, the actor has the opportunity to re-define these 

ecostructures prior to the next stage of the service journey. 
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Figure 2: Engagement among intersecting relevant ecostructures

 

 

The Relevant Ecostructure can be specified in terms of service platforms.  A service platform is 

an integration of resources and actor/agents that are enabled, coordinated and constrained by 

institutional arrangements.  Examples of service platforms are a health care clinic, a university, a travel 

reservation web site, etc. Transitions from one platform to another are made through the actor 

ecostructuring decisions.  Therefore, we extend the model of engagement by breaking down the 

engagement decision into three generic steps: Engage>Learn>Re-structure. Hence, each stage of a 

service journey begins with an ecostructuring decision to explore the options of the relevant 

ecostructure.  Once the actor has selected an option, then the engagement decision commits the actor’s 

resources to a service activity. 

Restructuring as part of a service journey stage can be considered a co-creative innovation of a 

service.  The restructuration decision by any actor reflects the information units and interpretive schema 

of the actor as these elements are updated through the experience of a resource-integrating, co-

creative activity.  Restructuration can result in either a narrowing or broadening of the relevant 

ecostructure of each actor that participated in the activity. In effect, ecostructuring is adaptation in 

context.  Therefore, the modeling of ecostructuring decisions provides a fertile ground for service 

research. 

At any given stage of the service journey, after the ecostructure is co-created, the execution of 

the service activity occurs.  The service activity represents the dynamic, resource-integrating 
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interactions of the engaged ecostructure.  The service ecostructure that executes the service activity can 

be re-defined and re-created at each stage of the journey. 

The significance of this view is the paradigm change that it represents.  Instead of viewing a 

service journey as the evolution of a service ecosystem, we view the service journey as the evolution of 

service ecostructures with embedded evolution of service ecosystems.  In other words, there is a two-

level hierarchy of systems or a system of systems.  DeBruyn (2014) refers to this hierarchy in terms of 

the re-structuring decision as a first instantiation and the ecosystem engagement as the second 

instantiation. 

Our interest is in the first level of the hierarchy.  The evolution of service ecostructures involves 

a complicated interactions among information resources. Furthermore, these interactions are complex 

due to the fact that they involve decision making by actors and agents.  Therefore, we must make 

decision models the core of the ecostructure evolution model. 

3 The multi-armed bandit problem 
The MAB problem is a classic decision model for cases of an actor who face multiple options, 

known as arms from the analogy of a gambler faced with multiple slot machines, for repetitive 

engagements.  Each engagement holds the possibility of value cocreation, but the actor does not 

possess perfect information of the potential of each option.  The only way to learn the potential of an 

option is to engage the option.  Consequently, the optimal journey for the actor is a combination of 

exploration and exploitation.  The strategy for the sequential decision process of selecting options 

involves a tradeoff between exploration and exploitation.  The standard MAB model is presented below. 

Notation: 

𝑡 ≔ round number of engagements of a journey 

𝑒 ≔ index for the number of engagements in an alternative 

𝐸 ≔ environment class = the set of bandits = the relevant ecostructure 

𝑘 ∈ 𝐾 ≔ set of alternative systems (aka arms) for engagements for the Actor.   

For a service journey, 𝐾𝑡 ∈ 𝐸 is a function of 𝑡 because the accessible, relevant ecostructures 

change during the service journey as the actor learns and adapts. 

𝑋𝑘,𝑒: =  random variable for the reward (value) of engaging in alternative 𝑘 for the 𝑒𝑡ℎ time. 

Note: For a service journey 𝑋𝑘,𝑒 is a vector. 

Assumption 1: Alternative systems are assumed independent. The reward in any alternative is 

independent of the rewards for all other alternatives. 
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Note: For a service system, rewards across arms are likely to be correlated as they represent the 

value co-created with the actor. 

Assumption 2: The reward function for any given alternative is stationary in the round 𝑡 and 

engagement 𝑒.  The actor’s estimates of the probability distribution of the rewards changes through 

Bayesian learning, but the reward function does not change. 

Note: For a service system, rewards for successive engagements change. 

Assumption 3: The actor learns and modifies the probability distribution of the reward of an 

alternative with each engagement in that alternative.  Hence, the sequence of estimated values for a 

system is autocorrelated in the number of engagements but is independent of the number of rounds. 

𝑋𝑡 ≔ random variable of the value of the engagement of round 𝑡 

𝑎𝑖 ≔ the action (decision) made by the Actor in round 𝑖 

𝐻𝑡−1 = {𝑎1, 𝑥1, 𝑎2,𝑥2, … 𝑎𝑡−1, 𝑥𝑡−1} ≔ history of the bandit policy up to round 𝑡 

𝜋 = {𝜋1, 𝜋2, 𝜋3, … } ≔ policy for a sequence of engagements  

𝜋𝑡(𝐻𝑡−1) = 𝑎𝑡 for all 𝑡 > 0  where 𝑎𝑡 = 𝑘 for some 𝑘 ∈ 𝐾 

Π ≔  set of available policies called the competitor class 

A policy describes a sequential decision process (SDP).  A policy embodies learning and 

adaptation, exploration and exploitation.  Learning changes the probability distribution of 𝑋𝑘,𝑒. 

𝑠𝑘(𝜋) ≔ stopping rule for alternative 𝑘 = the number of consecutive times that alternative 𝑘 

starting at iteration 𝑡 = 1 is chosen before switching. 

The analogy of the MAB problem to the engagement decisions of the service journey is 

apparent.  However, the service journey introduces some complications to the MAB.  First, a service 

engagement can take place at two different levels: an exploratory engagement to discover the 

requirements and capabilities of the option and a resource commitment to performing an activity with 

the option. The classic MAB recognizes only one type of engagement with each option.  The 

ecostructuring engagement is for the purpose of learning and adaptation.  Second, as the journey 

progresses, the ecostructuring decision must be repeated as the journey leads to expanding knowledge 

of the actor and changing requirements and capabilities of the options.  In the classic MAB, the options 

are stationary in terms of their costs and benefits.  Third, the cost of exploratory engagements, such as 

perusing a web site or visiting a professional service provider, includes the actor’s time and, potentially, 

out-of-pocket expense. In the classic MAB, these costs are considered low enough to allow many 

repeated engagements, but in typical service journeys, actors usually can endure only a few exploratory 

attempts at each stage. 
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4 Subjective Logic 
Exploratory engagements, by definition, are learning processes. As the actor does not have 

sufficient knowledge of the upcoming stage of the service journey and the capabilities and requirements 

of the optional platforms for the engagement, the actor is charged with the fundamental procedures of 

the scientific method: abductive reasoning for hypothesis generation, inductive reasoning for hypothesis 

validation and deductive reasoning for application of the validated hypothesis. 

Deductive inference is the logical kind of inference found in mathematics and arguments that 

justify a conclusion and can be stated as follows.  Proposition a implies proposition b, proposition b is 

derived from proposition a, because of an established law that makes proposition b a consequence of 

proposition a.  In a probabilistic sense, we can claim P(b|a) = 1.  Deduction can take the form of a 

statement about a sample (b) from knowledge of a population (a). 

Inductive inference is based on empiricism and establishes belief in a hypothesis based on the 

statistical measures of a sample and can be stated as follows. Proposition a (hypothesis) infers 

proposition b (sample statistic) because empirical evidence correlates b with a.  P(b|a) measures our 

belief in a, according to classical statistics.  Induction can be a statement about a population based on 

knowledge of a sample. 

Hypothesis generation, is the basic process of the ecostructure decision. Abduction begins with 

a hypothesis that is derived from an explanation.  The explanation can be based on data, intuition, 

judgment.  The explanation is not known to be true or correct.  When there is more than one 

explanation, we have multiple hypotheses.  Proposition b (examples, case, intuition, analogy, 

explanation, base state) abduces proposition a (hypothesis) because our intuition about proposition a 

indicates that it is possible.  P(a|b) measures our belief in a, according to Bayesian statistics or belief 

functions.  Abductive reasoning commits the fallacy of the converse, converse error, affirming the 

consequent, assuming sufficiency from necessity.  Abduction can be a statement about a population 

based on knowledge of a similar population, cursory knowledge or intuition. 

The nature of uncertainty separates abductive reasoning from inductive and deductive 

reasoning.  We review the different forms of uncertainty below: 

• Determinism: The absence of uncertainty, sometimes referred to known-knowns. 

• Alearatic uncertainty: Conventional, statistical uncertainty due to natural randomness of a process, 

hidden variables, unexplained variation/variability, sometimes referred to as known-unknowns.  The 

nature of the randomness is known, so the probability distribution is known.  The model 

specification is not in question. 
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• Epistemic uncertainty:  Uncertainty due to fuzziness or lack of knowledge about the process that 

gave rise to data, sometimes referred to as unknown-knowns. Assumptions about the probability 

distributions cannot be made.  More specifically, model epistemic uncertainty is the error due to 

ground truth not being within the hypothesis set. It is the part of epistemic uncertainty due to lack 

of knowledge about the model that generates the data. There is no single 

specification/identification of the model for the random variable in question, and the modeler is 

unaware of the correct model.  Approximation epistemic uncertainty is the part of epistemic 

uncertainty due to inaccuracy in selecting the hypothesis/model due to sampling error or bias. 

• Knightian Uncertainty refers to the case of unknown-unknowns and reflects ignorance of one’s 

ignorance. 

The Johari window in Table 1 summarizes the forms of uncertainty. 

 

Table 1: Johari Window 

Linguistic Precision\Artifact Measured Not Measured 

Precise Known-Known Known-Unknown 

Fuzzy, unknowable Unknown-Known Unknown-Unknown 

 

The only difference between aleatory and epistemic is model validation.  If a model is not 

validated, then there can exist multiple models of the phenomenon. If a model is validated, then there is 

only sampling error in the estimation of the parameters of the model.  However, model validation 

always carries hypothesis risk (Type 1 error).  Therefore, there is always some epistemic uncertainty. 

Subjective logic is a generalization of probabilistic logic.  The logic is based on subjective 

opinions about the actor’s options instead of probabilities.  In this context, the options are hypotheses 

about the value of available engagements in the relevant ecostructure.  Subjective logic can be used for 

modeling abductive reasoning, Bayesian networks, Trust networks and decision making under 

uncertainty and vagueness.  The atomic formula of subjective logic is the opinion.  An opinion consists of 

an actor’s belief distribution, uncertainty and a source of relevant knowledge known as the base rate 

distribution.  The base rate is the role played by an intelligent agent. 

Uncertainty in subjective logic can be both aleatory and epistemic.  The uncertainty occurs at 

two levels.  First order uncertainty is the typical aleatoric uncertainty about the hypothesis.  Second 

order uncertainty represents the vacuity of evidence: 

• Aleatory uncertainty regarding the lack of evidence to support the hypothesis. 
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• Epistemic uncertainty about the knowledge behind the explanation of the hypothesis. 

• Trust in the source of evidence or explanation for the hypothesis. 

A subjective opinion incorporates second order uncertainty applied to the first order 

uncertainty.  In other words, the subjective opinion is expressed as a probability distribution of a 

probability distribution. 

Basic structure of an opinion 

ℋ ≔ a domain of hypotheses, a discrete state space of states, propositions, hypotheses or 

model specifications.  The elements of the domain are mutually exclusive and collectively exhaustive.  

The elements of the domain are assumed to be crisp. 

𝒫(ℋ) ≔ the power set of ℋ 

ℛ(ℋ) = 𝒫(ℋ)\{{ℋ}, {∅}} ≔ the hyperdomain of  ℋ 

𝒞(ℋ) = {ℎ ∈ ℛ(ℋ): |ℎ| > 1} ≔ the composite set of ℋ 

Default Base Rate (aka Relative Atomicity) of a composite value ≔  
|𝑐|

|ℋ|
   

Variable over the hypotheses 

𝑋 ≔ the name of the random variable over the hypotheses in ℛ(ℋ) 

𝒳 ⊆ ℝ ≔ the domain of 𝑋 

𝑥 ∈ 𝒳 ≔ a value of 𝑋  

Subjective Opinion 

𝑏𝑋 ≔ subjective joint belief mass distribution over the possible states , the belief that that 𝑥 is 

true, membership function, truth measure.   

Belief mass expresses support for the truth of any one of the singleton values in a composite 

value.  

Sharp Belief: Belief mass for a singleton 

Vague Belief: Belief mass for a composite value 

𝑎𝑋 ≔ joint base rate distribution, the non-informative prior probability distribution of 𝑋, expert 

opinion based on background information, data, theory, intuition.  Non-informative means that there is 

no direct empirical support for the base rate, but there can be more general support for the subject 

domain 

𝑎𝑋 ∈ [0,1]  

∑ 𝑎𝑋(𝑥)𝑥∈𝒳 = 1  

𝑎𝑋(𝑥|𝑥𝑖) =
𝑎𝑋(𝑥∩𝑥𝑖)

𝑎𝑋(𝑥𝑖)
, 𝑥, 𝑥𝑖 ∈ ℛ ≔ Relative Base Rate 
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𝑢𝑋 ≔ scalar uncertainty mass, epistemic uncertainty about the opinion, a measure of the 

vacuity of evidence, the lack of confidence in probabilities about the states 𝑥 ∈ 𝒳 

𝑢𝑋 ∈ [0,1] 

𝑏𝑋(𝑥), 𝑢𝑋 , 𝑎𝑋(𝑥) ∈ [0,1]  

𝐴 ≔ a source of an opinion.  All sources have a common semantic understanding of the domain. 

𝑤𝑋
𝐴 ≔ an opinion of actor 𝐴 over the variable 𝑋 

𝑤𝑋
𝐴 = (𝑏𝑋, 𝑢𝑋, 𝑎𝑋) a tuple 

 

The subjective logic model: 

𝑢𝑋 +  ∑ 𝑏𝑋𝑥∈ℋ (𝑥) = 1  

∑ 𝑎𝑋𝑥∈ℋ (𝑥) = 1  

Vacuous opinion  ≔  𝑢𝑋 = 1 

Uncertain opinion ≔  0 < 𝑢𝑋 < 1 

Dogmatic opinion ≔  𝑢𝑋 = 1 

Absolute opinion ≔  𝑢𝑋 = 1 and 𝑏𝑋(𝑥) = 1  for some single value 𝑥 

 

Aleatory opinion: an opinion that is based on aleatory uncertainty 

Epistemic opinion: an opinion based on epistemic uncertainty 

First order probabilities 

𝑝𝑋 ≔ probability distribution over the singleton states 𝑥 ∈ 𝒳.   

𝑝ℛ ≔ probability distribution over the composite states 𝑥 ∈ ℛ 

𝑝𝑋(𝑥) = ∑ 𝑎𝑋(𝑥|𝑥𝑖)𝑝𝑅(𝑥𝑖)𝑥𝑖∈ℛ   

 

Projected Probability Distribution 

A projection of an opinion adds or removes uncertainty according to the balance of belief and 

disbelief of the base rate distribution.  Projected Probability Distribution = Uncertainty Minimizing 

Opinion:  The projected opinion that has zero uncertainty. The projected probability distribution 

represents how the actor’s beliefs would be translated to a state of no uncertainty – the translation 

being consistent with the probability distribution of the base rate. 
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𝑃𝑋 ≔  projected probability distribution of 𝑥 after updating the opinion with knowledge of base 

state (prior, expert opinion) and exploratory data.   

𝑃𝑋(𝑥) = 𝑏𝑋(𝑥) + 𝑎𝑋(𝑥)𝑢(𝑥), ∀𝑥 ∈ 𝑋  

Uncertainty Maximizing Opinion: The opinion with the highest uncertainty that still projects 

onto 𝑃𝑋.  The Uncertainty Maximizing opinion is found by increasing uncertainty until one of the belief 

masses for one of the singleton values is zero.  Epistemic opinions (which cannot be supported by data) 

must be uncertainty maximizing opinion. 

Second-order probabilities 

The second-order probabilities are probability distributions. The parameter 𝑝𝑋(𝑥) for each 

Bernoulli random variable for each 𝑥 ∈ 𝑋  has a distribution due to the aleatoric or epistemic 

uncertainty in this parameter.  This distribution is the second-order distribution.  We assume that the 

projected probability distribution is assumed to be the mean values of the probability distribution of the 

second-order probability distribution over the probabilities of the singleton state probabilities. Second-

order probability is a pdf over the first-order pdf.  For each opinion there is a unique secondary pdf. The 

Dirichlet probability distribution is uniquely suited to representing the second-order probabilities. 

Dirichlet Distribution 

Strength Parameters: Dirichlet Distribution has a distribution of parameters 𝛼𝑋(𝑥), ∀𝑥 ∈ 𝑋   

𝐷𝑖𝑟(𝑝𝑋; 𝛼𝑋) ≔ Dirichlet Distribution = the second-order probability distribution of belief 

𝐷𝑖𝑟(𝑝𝑋; 𝛼𝑋) =
Γ(∑ 𝑎𝑋(𝑥)𝑥∈𝑋 )

∏ Γ(𝑎𝑋(𝑥))𝑥∈𝑋
∏ 𝑝𝑋(𝑥)(𝛼𝑋(𝑥)−1)

𝑥∈𝑋    

𝐸𝑋(𝑥) =  
𝛼𝑋(𝑥)

∑ 𝛼𝑋(𝑥𝑖)𝑥𝑖∈𝑋
  

𝑉𝑎𝑟𝑋(𝑥) =
𝛼𝑋(𝑥)(∑ 𝛼𝑋(𝑥𝑖)𝑥𝑖∈𝑋 −𝛼𝑋(𝑥))

(∑ 𝛼𝑋(𝑥𝑖)𝑥𝑖∈𝑋 )
2

(∑ 𝛼𝑋(𝑥𝑖)𝑥𝑖∈𝑋 +1)
  

If the actor is aware of the base rate and the projected distribution, then the actor is motivated 

to investigate the options according to the projected distribution as it represents a compromise 

between the actor’s beliefs and the base rate. As the actor explores options, the actor accumulates 

evidence with which the actor updates the belief distribution and reduces uncertainty. 

𝑊 ≔ unit of evidence weight, 𝑊 ≈ 2 

𝑟𝑋 ≔ evidence vector 

𝛼𝑋(𝑥) = 𝑟𝑋(𝑥) + 𝑎𝑋(𝑥)𝑊, ∀𝑥 ∈ 𝑋    

𝐷𝑖𝑟𝑒(𝑝𝑋; 𝑟𝑋, 𝑎𝑋(𝑥)) ≔ evidence-based Dirichlet distribution = the Dirichlet distribution with 𝛼𝑋 

evaluated according to the updating expression above. 
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𝑃𝑋(𝑥) = 𝐸𝑋(𝑥), ∀𝑥 ∈ 𝑋  

⇒ 𝑏𝑋(𝑥) + 𝑎𝑋(𝑥)𝑢𝑋 =  
𝛼𝑋(𝑥)

∑ 𝛼𝑋(𝑥𝑖)𝑥𝑖∈𝑋
=

𝑟𝑋(𝑥)+𝑎𝑋(𝑥)𝑊

∑ 𝑟𝑋(𝑥𝑖)+𝑊𝑥𝑖∈𝑋
  

⇒ 𝑏𝑋(𝑥) =
𝑟𝑋(𝑥)

∑ 𝑟𝑋(𝑥𝑖)+𝑊𝑥𝑖∈𝑋
, ∀𝑥 ∈ 𝑋 , 𝑢𝑋 =

𝑊

∑ 𝑟𝑋(𝑥𝑖)+𝑊𝑥𝑖∈𝑋
  

and 

𝑢𝑋 +  ∑ 𝑏𝑋𝑥∈ℋ (𝑥) = 1  

∑ 𝑎𝑋𝑥∈ℋ (𝑥) = 1  

The procedure for performing exploration with the assistance of an intelligent agent providing 

the base rate follows.  We assume that the actor has a fixed budget for number of explorations, and 

wishes to minimize uncertainty through exploratory, ecostructuring decisions. 

Ecostructuring procedure 

1. Abductive, find support for alternate hypotheses 

2. Enter beliefs 

3. Engage IA for base rate 

4. Calculate projected probability as best abductive probabilities that combine beliefs and base 

rate 

5. Explore based on the highest projected probability. EMV criterion 

6. Decision tree: outcome is binary, cost to explore, learning incorporated in data, update priors, 

update beliefs, reduce uncertainty 

7. If uncertainty < threshold or number of explorations = limit, then exploit option with highest 

belief. 

8. Else, go to step 4 

5 Conclusions 
This paper provides an exposure to subjective logic as a modeling tool for service ecostructuring 

decisions.  Clearly, this paper has only scratched the surface of subjective logic and its potential for 

modeling service journeys.  We conclude with some examples that illustrate the application of 

subjective logic and the manner in which the intelligent assistant and the actor use this logic to arrive at 

a satisfactory ecostructuring decision.  Table 2 shows the evolution of opinion assisted by an IA. 

 The initial condition shows the base rate and the actor’s belief distribution over three options. 

We assume that the actor’s beliefs are supported by some kind of data, information, intuition or 
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experience that we represent as the prior support for the actor’s beliefs.  The reader can see how the 

projected probability distribution represents a zero-uncertainty opinion that is a compromise between 

the base rate and the actor’s belief distribution.  Exploring the option with the highest projected 

probability, the actor records the experience with this engagement.  In this example, we simulate the 

actor having had a negative experience, and updates the information state accordingly.  The belief 

distribution is updated accordingly, and the uncertainty is reduced.  The updated projected probability 

now indicates that the second option is most preferred.  After exploring the second option, we simulate 

the actor having had a positive experience. Finally, when the uncertainty is reduced to 25%, the actor is 

satisfied with choosing the second option. 

 

Table 2:  Scenario of the ecostructuring procedure 

  

Option 
1 

Option 
2 

Option 
3 

Uncertainty/ 
Information 

State 

Base Norm/ 
Projection 

Norm 

 Base Rate 0.50 0.30 0.20   
Initial Condition Actor Prior Support 1.00 1.00 1.00 3.00  

 Belief 0.20 0.20 0.20 0.40 0.333 

 Projected Probability 0.40 0.32 0.28  0.133 

Exploration 1 Actor Priors 0.50 1.75 1.75 4.00  
option1 Belief 0.08 0.29 0.29 0.33 0.746 

bad experience Projected Probability 0.25 0.39 0.36  0.246 

Exploration 2 Actor Priors 1.25 1.96 1.79 5.00  
option 2 Belief 0.18 0.28 0.26 0.29 0.507 

 Projected Probability 0.32 0.37 0.31  0.147 

Exploration 3 Actor Priors 1.93 2.19 1.88 6.00  
option 2 Belief 0.16 0.37 0.22 0.25 0.573 

 Projected Probability 0.28 0.45 0.27  0.133 

 

An interesting approach to evaluating the progress of the ecostructuring procedure is the 

comparison of the actor’s belief distribution to the base rate distribution and the projected probability 

distribution.  To make this evaluation we define two norms. The base rate norm (BRN) measures the 

distance between the actor’s belief distribution, normalized to a probability distribution for uncertainty, 

and the base rate distribution. The projected probability norm (PPN) measures the distance between 

the actor’s belief distribution, normalized to a probability distribution for uncertainty, and the projected 

probability distribution.  These norms reflect the extent to which the actor is consonant with the advice 

from the IA. 
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‖𝐵𝑅𝑁‖ = ∑ |𝑎𝑋(𝑥𝑖) −
𝑏𝑋(𝑥𝑖)

1−𝑢𝑋
|𝑥𝑖∈𝑋   

‖𝑃𝑃𝑁‖ = ∑ |𝑃𝑋(𝑥𝑖) −
𝑏𝑋(𝑥𝑖)

1−𝑢𝑋
|𝑥𝑖∈𝑋   

A simulation of the example of Table 2 that generated 1000 values of the actor’s updated 

information state for option 1.  Figure 3 shows the variety of values for the norms as a function of the 

actor’s updated information state after exploring the first option in the first exploration.  In this 

example, a value above one for the experience indicates a positive experience with the option and a 

value below 1 indicates a negative experience. 

Figure 3: Norms as a function of option 1 information state update

 

 

Figure 4: Norms as a function of option 2 information state update 

 



16 
 

References 
Badinelli, R., (2021). “Service Support Systems for Ecostructuring Decision Support”, to appears in 

Research Handbook for Services Management, Mark Davis, Ed., Elgar Publishing.  

Badinelli, R. 2015.  Modeling Service Systems, Business Expert Press. 

Badinelli, R. (2013). “Viability and service evolution”, presented in invited session at the INFORMS 

Annual Meeting, Minneapolis, MN. 

Badinelli, R. (2012). “Fuzzy modeling of service system engagements”, Service Science, Summer, vol. 4, 

pp. 135-146. 

Badinelli, R., Polese, F., Sarno, D. (2019).  “The emergence of service ecosystems from service 

ecostructure”, working paper. 

Badinelli, R., Barile, S., Ng., I., Polese, F., Saviano, M., Di Nauta, P (2012). “Viable Service Systems and 

Decision Making in Service Management”, Journal of Service Management , Vol. 23 Iss: 4, pp.498 

- 526. 

Barile, S. and Polese, F. (2010), “Smart Service Systems and Viable Service Systems”, Service Science, Vol. 

2 No.1, pp. 21-40. 

De Bruyn, P. (2014). Generalizing normalized systems theory: Towards a foundational theory for 

enterprise engineering, Ph.D. dissertation, University of Antwerp. 

Golinelli, G. M. (2010). Viable Systems Approach (VSA) Governing Business Dynamics. Milan, Wolters 

Kluwer Italia Srl. 

Josang, Audun (2016). Subjective Logic: A Formalism for Reasoning Under Uncertainty, Springer, 

Switzerland. 

Langley, D., van Doorn, J., Ng, I., Stieglitz, S., Lazovik, A., Boonstra, A. (2020). “The Internet of Everything: 

Smart things and their impact on business models”, Journal of Business Research, 

https://doi.org/10.1016/j.jbusres.2019.12.035 

Lattimore, T., Szepesvari, C., Bandit Algorithms, https://tor-lattimore.com/downloads/book/book.pdf, 

accessed June, 2021. 

Mannaert, H. and Verelst, J. (2009).  Normalized systems: re-creating information technology based on 

laws for software evolvability, Koppa. 

Polese, F. (2018).  Successful Value Co-creation Exchanges: A VSA contribution, in Barile, S., Pellicano, M. 

and Polese, F. (eds.), Social Dynamics in a Systems Perspective, New Economic Windows, 

Springer, Cham, 19-37. 

https://doi.org/10.1016/j.jbusres.2019.12.035
https://tor-lattimore.com/downloads/book/book.pdf


17 
 

Polese, F., Pels, J., Tronvoll, B., Bruni, R. and Carrubbo, L. (2017).  A4A relationships, Journal of Service 

Theory and Practice,  27, 5.1040-1056. 

Siltaloppi, J., Koskela-Huotari, K. and Vargo, S.L. (2016).  Institutional complexity as a driver for 

innovation in service ecosystems, Service Science,  8, 3.333-343. 

Vargo, S.L. and Lusch, R.F. (2008).  Service-dominant logic: continuing the evolution, Journal of the 

Academy of marketing Science,  36, 1.1-10. 

Vargo, S.L. and Lusch, R.F. (2011).  It's all B2B… and beyond: Toward a systems perspective of the 

market, Industrial marketing management, 40, 2.181-187. 

Vargo, S.L. and Lusch, R.F. (2016).  Institutions and axioms: an extension and update of service-dominant 

logic, Journal of the Academy of Marketing Science,  44,  1.5-23. 

Vargo, S.L. and Lusch, R.F. (2017).  Service-dominant logic 2025, International Journal of Research in 

Marketing,  34, 46-67. 

Wieland, H., Polese, F., Vargo, S.L. and Lusch, R.F. (2012).  Toward a service (eco)systems perspective on 

value creation, International Journal of Service Science, Management Engineering, and 

Technology, 3, 3.12-25. 

Yi, Y. and Gong, T. (2013).  Customer value co-creation behaviour: scale development and validation, 

Journal of Business Research, Vol. 

 


